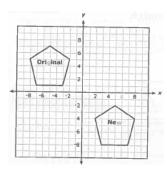
Learning Goal: I can *reflect* a figure and write the algebraic rule for the *reflection*.

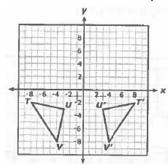
Meta de Aprendizaje: Puedo **reflejar** una figura y escribir la regla algebraica para la **reflexión**.

Language Goal: I can write the algebraic rule for a *reflection* and justify my answer to a partner.

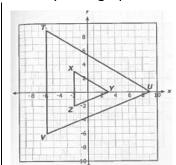
Lenguaje Objetivo: Puedo escribir la regla algebraica para una **reflexión** y justificar mi respuesta a un compañero.

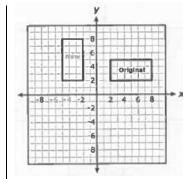

Directions: Use your notes from Lesson 10.1 and Lesson 10.3 to answer the following questions.

- 1. Which rule is the **ONLY** rule that adds or subtracts?
- 2. Which rule is the **ONLY** rule that multiplies?
- 3. Are the angles and side lengths congruent for reflections? Circle one:


YES NO SOMETIMES

- 4. What is a dilation called that gets smaller?
- 5. What transformation is described by the rule $(x, y) \rightarrow (-x, y)$?
- 6. What transformation is described by the rule $(x, y) \rightarrow (-x, -y)$?
- 7. What transformation is described by the rule $(x, y) \rightarrow (\frac{1}{4}x, \frac{1}{4}y)$?
- 8. What transformation is described by the rule $(x,y) \rightarrow (x-4,y+2)$?


Problems 9 through 12: What transformation is represented by each graph?


Answer:

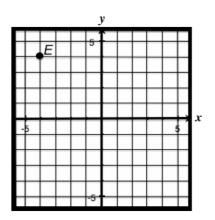
Answer:

Answer:

Answer:

Directions: Reflect the shape, if required. Determine the rule for the reflection.

1. Point E has coordinates of (-4, 4). Reflect Point E across the y-axis. What are the new coordinates for Point E'?

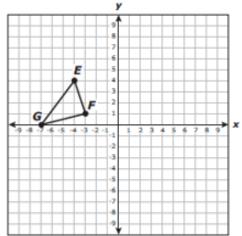

Point	(x,y) Coordinate
E	(-4,4)
E'	(,)

1?

What is the rule for the **reflection**?

2. Point E has coordinates of (-4, 4). **Reflect** Point E *across the x-axis*. What are the new coordinates for Point E'?

Point		x , y ordina	
E	(-4,4)
E'	(,)

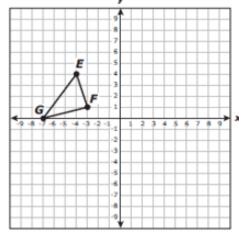


What is the rule for the **reflection**?

$$(x,y) \rightarrow (\underline{\hspace{1cm}},\underline{\hspace{1cm}})$$

3. Triangle GEF has coordinates as shown below. What are the coordinates of Triangle GEF after a **reflection across the x-axis**. Fill in the table.

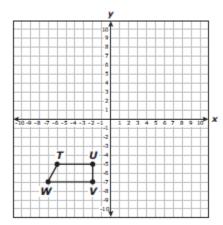
Point	(x,y) Coordinate	
G	(-7 , 0)	
G'	(,)	
E	(-4,4)	
E'	(,)	
F	(-3 , 1)	
F'	(,)	



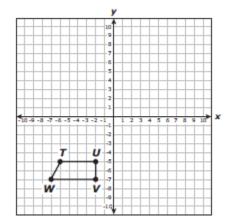
What is the rule for the reflection?

$$(x,y) \rightarrow (\underline{\hspace{1cm}},\underline{\hspace{1cm}})$$

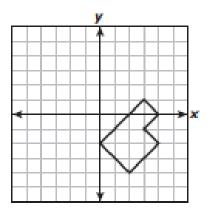
4. Triangle GEF has coordinates as shown below. What are the coordinates of Triangle GEF after a **reflection across the y-axis**. Fill in the table.


Point	(x,y) Coordinate
G	(-7 , 0)
G'	(,)
E	(-4 , 4)
E'	(,)
F	(-3 , 1)
F'	(,)

What is the rule for the **reflection**?


$$(x,y) \rightarrow ($$
______,____

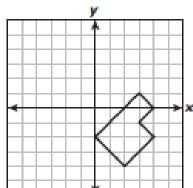
5. Trapezoid TUVW is as shown. If the vertices were **reflected** *across the x-axis*, what would be the rule?


$$(x,y) \rightarrow (\underline{\hspace{1cm}},\underline{\hspace{1cm}})$$

6. Trapezoid TUVW is as shown. If the vertices were **reflected** *across the y-axis*, what would be the rule?

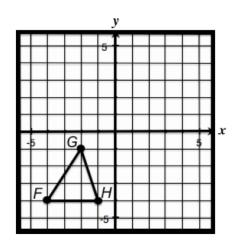
$$(x,y) \rightarrow (\underline{\hspace{1cm}},\underline{\hspace{1cm}})$$

- 7. Reflect the figure across the y-axis. Which of the following points could be one of the new vertices?
 - A. (0,2)
 - B. (0,-2)
 - C. (3,-1)
 - D. (2,-4)


What is the rule for the reflection?

$$(x,y) \rightarrow (\underline{\hspace{1cm}},\underline{\hspace{1cm}})$$

8. Reflect the figure across the x-axis. Which of the following points could be one of the new vertices?

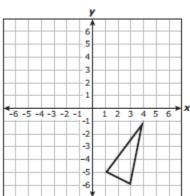

- F. (-3, -1)
- G. (0, 2)
- H. (4,-2)

What is the rule for the reflection?

$$(x,y) \rightarrow (\underline{\hspace{1cm}},\underline{\hspace{1cm}})$$

9. Triangle FGH was reflected to create Triangle F'G'H'. As shown, Vertex F was at (-4, -4).

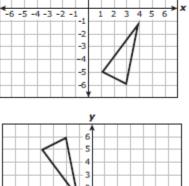
If Vertex F' is now at (4, -4), which rule describes this **reflection**?


1.
$$(x,y) \to (x+8,y)$$

J.
$$(x,y) \to (-1x,-1y)$$

K.
$$(x,y) \rightarrow (x,-y)$$

L.
$$(x,y) \rightarrow (-x,y)$$


10. Reflect the triangle across the y-axis.

What is the rule for the reflection?

$$(x,y) \rightarrow (\underline{\hspace{1cm}},\underline{\hspace{1cm}})$$

11. Reflect the triangle across the x-axis.

What is the rule for the reflection?

$$(x,y) \rightarrow (\underline{\hspace{1cm}},\underline{\hspace{1cm}})$$

- 12. What are the **TWO** rules for **reflections**? $(x,y) \rightarrow (___,___)$ and $(x,y) \rightarrow (___,___)$
- 13. Which transformation has the ONLY rule that ADDS or SUBTRACTS?

YES NO **SOMETIMES**

15. Which transformation has the **ONLY** rule that multiplies?

14. Are the sides and angles of reflection congruent?

16. What is a **dilation** called that **gets bigger**?