PRACTICE: LESSON 10.3 - REFLECTIONS W/ ALGEBRAIC RULE
Name:
Learning Goal: I can reflect a figure and write the algebraic rule for the reflection.
Meta de Aprendizaje: Puedo reflejar una figura y escribir la regla algebraica para la reflexión.

Language Goal: I can write the algebraic rule for a reflection and justify my answer to a partner. Lenguaje Objetivo: Puedo escribir la regla algebraica para una reflexión y justificar mi respuesta a un compañero.

Directions: Use your notes from Lesson 10.1 and Lesson 10.3 to answer the following questions.

1. Which rule is the ONLY rule that adds or subtracts?
2. Which rule is the ONLY rule that multiplies?
3. Are the angles and side lengths congruent for reflections? Circle one: YES NO SOMETIMES
4. What is a dilation called that gets smaller?
5. What transformation is described by the rule $(x, y) \rightarrow(-x, y)$?
6. What transformation is described by the rule $(x, y) \rightarrow(-x,-y)$? \qquad
7. What transformation is described by the rule $(x, y) \rightarrow\left(\frac{1}{4} x, \frac{1}{4} y\right)$?
8. What transformation is described by the rule $(x, y) \rightarrow(x-4, y+2)$? \qquad
Problems 9 through 12: What transformation is represented by each graph?

Answer:
\qquad

Answer:

Answer:
\qquad

Answer:
\qquad

Directions: Reflect the shape, if required. Determine the rule for the reflection.

1. Point E has coordinates of $(-4,4)$. Reflect Point E across the \boldsymbol{y}-axis. What are the new coordinates for Point E'?

Point	(\mathbf{x}, \mathbf{y}) Coordinate
E	$(-4,4)$
E^{\prime}	$()$,

What is the rule for the reflection?

$$
(x, y) \rightarrow(
$$

\qquad , \qquad
2. Point E has coordinates of ($-4,4$). Reflect Point E across the \boldsymbol{x}-axis. What are the new coordinates for Point E^{\prime} ?

Point	(\mathbf{x}, \mathbf{y}) Coordinate
E	$(-4,4)$
E^{\prime}	$()$,

What is the rule for the reflection?

$$
(x, y) \rightarrow(
$$

\qquad , \qquad
3. Triangle GEF has coordinates as shown below. What are the coordinates of Triangle GEF after a reflection across the x-axis. Fill in the table.

Point	(x, y) Coordinate
G	$(-7,0)$
G^{\prime}	$(, \quad)$
E	$(-4,4)$
E^{\prime}	$(, \quad)$
F	$(-3,1)$
F^{\prime}	$(, \quad)$

What is the rule for the reflection?

$$
(x, y) \rightarrow(
$$

\qquad , \qquad
4. Triangle GEF has coordinates as shown below. What are the coordinates of Triangle GEF after a reflection across the y-axis. Fill in the table.

Point	(x, y) Coordinate
G	$(-7,0)$
G^{\prime}	$(, \quad)$
E	$(-4,4)$
E^{\prime}	$(, \quad)$
F	$(-3,1)$
F^{\prime}	$(, \quad)$

What is the rule for the reflection?

$$
(x, y) \rightarrow(
$$

\qquad , \qquad
5. Trapezoid TUVW is as shown. If the vertices were reflected across the \boldsymbol{x}-axis, what would be the rule?

$$
(x, y) \rightarrow(\ldots, \square)
$$

6. Trapezoid TUVW is as shown. If the vertices were reflected across the \boldsymbol{y}-axis, what would be the rule?

7. Reflect the figure across the \boldsymbol{y}-axis. Which of the following points could be one of the new vertices?
A. $(0,2)$
B. $(0,-2)$
C. $(3,-1)$
D. $(2,-4)$

What is the rule for the reflection?
$(x, y) \rightarrow($ \qquad , ___)

8. Reflect the figure across the \boldsymbol{x}-axis. Which of the following points could be one of the new vertices?
E. $(-4,0)$
F. $(-3,-1)$
G. $(0,2)$
H. $(4,-2)$

What is the rule for the reflection?

$$
(x, y) \rightarrow(
$$

\qquad , \qquad

9. Triangle FGH was reflected to create Triangle $\mathrm{F}^{\prime} \mathrm{G}^{\prime} \mathrm{H}^{\prime}$. As shown, Vertex F was at $(-4,-4)$.

If Vertex F^{\prime} is now at $(4,-4)$, which rule describes this reflection?
I. $(x, y) \rightarrow(x+8, y)$
J. $(x, y) \rightarrow(-1 x,-1 y)$
K. $(x, y) \rightarrow(x,-y)$
L. $(x, y) \rightarrow(-x, y)$
10. Reflect the triangle across the y-axis.

What is the rule for the reflection?
$(x, y) \rightarrow($ \qquad , -

11. Reflect the triangle across the x-axis.

What is the rule for the reflection?

12. What are the TWO rules for reflections? $(x, y) \rightarrow($ \qquad , \qquad $)$ and $(x, y) \rightarrow($ \qquad , \qquad)
13. Which transformation has the ONLY rule that ADDS or SUBTRACTS?
14. Are the sides and angles of reflection congruent?

YES NO SOMETIMES
15. Which transformation has the ONLY rule that multiplies?
16. What is a dilation called that gets bigger?

