PRACTICE: LESSON 10.4 - ROTATIONS W/ ALGEBRAIC RULE
Learning Goal: I can rotate a figure and write the algebraic rule for the rotation.
Meta de Aprendizaje: Puedo rotar una figura y escribir la regla algebraica para la rotación.

Name:
Language Goal: I can write the algebraic rule for a rotation and justify my answer to a partner.
Lenguaje Objetivo: Puedo escribir la regla algebraica para una rotación y justificar mi respuesta a un compañero.

Directions: Use your notes from Lesson 10.1 and Lesson 10.4 to answer the following questions.

1. Which rule is the ONLY rule that adds or subtracts?
2. Which rule is the ONLY rule that multiplies?
3. Are the angles and side lengths congruent for rotations? Circle one: YES NO SOMETIMES
4. What is a dilation called that gets bigger?
5. What transformation is described by the rule $(x, y) \rightarrow(-y, x)$?
6. What transformation is described by the rule $(x, y) \rightarrow(x-1, y)$? \qquad
7. What transformation is described by the rule $(x, y) \rightarrow(0.5 x, 0.5 y)$? \qquad
8. What transformation is described by the rule $(x, y) \rightarrow(x,-y)$?

Problems 9 through 12: What transformation is represented by each graph?

Answer:

Answer:

Answer:

Answer:

Directions: Rotate the shape, if required. Determine the rule for the rotation.

1. Point M has coordinates of $(4,6)$. Rotate Point $\mathrm{M} 9 \mathbf{0}^{\circ}$ clockwise. What are the new coordinates for Point M^{\prime} ?

Point	(x, y) Coordinate
M	$(4,6)$
M^{\prime}	$()$,

What is the rule for the rotation?

$$
\left.x_{1}, y\right) \rightarrow
$$

\qquad , _____)
2. Point M has coordinates of (4,6). Rotate Point $M 90^{\circ}$ counter-clockwise. What are the new coordinates for Point M^{\prime} ?

What is the rule for the rotation?

$$
(x, y) \rightarrow(.
$$, \qquad

3. Triangle GEF has coordinates as shown below. What are the coordinates of Triangle GEF after a $\mathbf{1 8 0}^{\circ}$ counter-clockwise rotation. Fill in the table.

Point	(x, y) Coordinate
G	$(-7,0)$
G^{\prime}	$(, \quad)$
E	$(-4,4)$
E^{\prime}	$(, \quad)$
F	$(-3,1)$
F^{\prime}	$(, \quad)$

What is the rule for the rotation?

$$
(x, y) \rightarrow(
$$

\qquad ,___)
4. Triangle GEF has coordinates as shown below. What are the coordinates of Triangle GEF after a $\mathbf{2 7 0}{ }^{\circ}$ clockwise rotation. Fill in the table.

Point	(x, y) Coordinate
G	$(-7,0)$
G^{\prime}	$(, \quad)$
E	$(-4,4)$
E^{\prime}	$(, \quad)$
F	$(-3,1)$
F^{\prime}	$(, \quad)$

What is the rule for the rotation?

$$
(x, y) \rightarrow(
$$

\qquad , _____)
5. Trapezoid TUVW is as shown. If the vertices were reflected across the \boldsymbol{x}-axis, what would be the rule?

$$
(x, y) \rightarrow(\ldots, \ldots)
$$

6. Trapezoid TUVW is as shown. If the vertices were rotated 90° clockwise, what would be the rule?
$(x, y) \rightarrow($ \qquad , \qquad)

7. Translate the figure 2 units down and 5 units left.

What is the rule for the translation?

$$
(x, y) \rightarrow(\ldots, \ldots
$$

8. Rotate the figure 90° counter-clockwise.

What is the rule for the rotation?
$(x, y) \rightarrow($,)

9. Triangle FGH was rotated to create Triangle $\mathrm{F}^{\prime} \mathrm{G}^{\prime} \mathrm{H}^{\prime}$. As shown, Vertex F was at $(-4,-4)$.

If Vertex F^{\prime} is now at $(4,4)$, which rule describes this rotation?
A. $(x, y) \rightarrow(x+8, y+4)$
B. $(x, y) \rightarrow(-x,-y)$

C. $(x, y) \rightarrow(y,-x)$
D. $(x, y) \rightarrow(-x, y)$
10. Rotate the triangle $\mathbf{1 8 0}^{\circ}$ clockwise.

What is the rule for the rotation?
$(x, y) \rightarrow($ \qquad , _ـ___)

11. Rotate the triangle $\mathbf{2 7 0}{ }^{\circ}$ counter-clockwise.

What is the rule for the rotation?

$$
(x, y) \rightarrow(\ldots
$$

12. What are the TWO rules for reflections? $(x, y) \rightarrow($ \qquad
\square) and $(x, y) \rightarrow($ \qquad , __)
13. Which transformation has the ONLY rule that ADDS or SUBTRACTS?
14. Are the sides and angles of rotations congruent?

YES
NO
SOMETIMES
15. Which transformation has the ONLY rule that multiplies? \qquad
16. What are the FOUR rules for rotations? $(x, y) \rightarrow($ \qquad , \qquad $) ;(x, y) \rightarrow($ \qquad , ___)

$$
(x, y) \rightarrow(\ldots, \ldots) ;(x, y) \rightarrow(\ldots, \ldots)
$$

