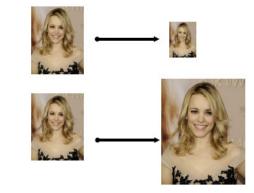
Name: _____

Learning Goal: I can *dilate* a figure and write the algebraic rule for the *dilation*. **Meta de Aprendizaje**: *Puedo dilatar una figura y escribir la regla algebraica para la dilatación*.


Language Goal: I can write the algebraic rule for a *dilation* and justify my answer to a partner.

Lenguaje Objetivo: Puedo escribir la regla algebraica para una **dilatación** y justificar mi respuesta a un compañero.

DILATIONS

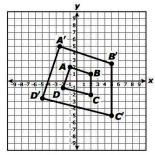
MOST IMPORTANT INFORMATION:

- 1. Dilations are _____!
 - The angles of the OLD and NEW shape are ______.
 - The sides of the OLD and NEW shape are ______.

- 2. Dilations are the ONLY rule that ______ .
- 3. The ______ the x and y coordinates.

$$SCALE\ FACTOR = \frac{Coordinate}{Coordinate}$$

4. There are _____ types of dilations:

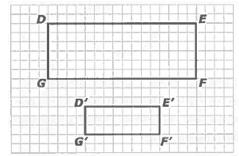

ENLARGEMENTS

- New shape gets bigger
- Multiply by a **SCALE FACTOR** greater than 1.

$$(x,y) \rightarrow (\mathbf{3}x,\mathbf{3}y)$$

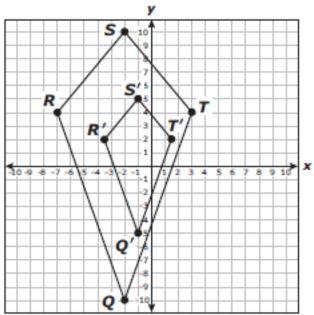
OR

$$(x,y) \rightarrow (\frac{3}{2}x, \frac{3}{2}y)$$


REDUCTIONS

- New shape gets smaller
- Multiply by a SCALE FACTOR less than 1.

$$(x,y) \to ({\bf 0},{\bf 5}x,{\bf 0},{\bf 5}y)$$

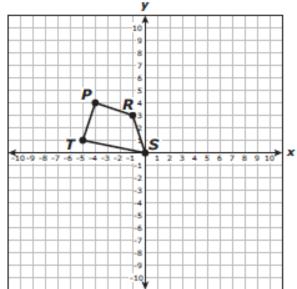

OR

$$(x,y) \rightarrow (\frac{1}{4}x, \frac{1}{4}y)$$

EXAMPLE 1

Quadrilateral QRST was *dilated* with the origin as the center of dilation to create quadrilateral Q'R'S'T'.

Point	(x,y) Coordinate	
R	(-7,4)	
R'	(,)	


$$SCALE\ FACTOR = \frac{NEW}{OLD} = ----$$

What is the *rule* for the *dilation*?

$$(x,y) \rightarrow (\underline{\hspace{1cm}},\underline{\hspace{1cm}})$$

EXAMPLE 2

Becca drew a figure on the coordinate grid below.

She then *dilated* the figure by using a *scale factor* of 2. What are the new ordered pairs?

Point	Original Coordinate	New Coordinate
Р	(-4 , 4)	
R	(-1 , 3)	
S	(0,0)	
Т	(-5 , 1)	

What is the *rule* for the *dilation*?

$$(x,y) \rightarrow (\underline{\hspace{1cm}},\underline{\hspace{1cm}})$$