Learning Goal: I can solve word problems involving the volume of a cylinder, cone, and sphere.
Meta de Aprendizaje: Puedo resolver problemas de palabras relacionados con el volumen de un cilindro, cono y esfera.

Language Goal: I can discuss with a partner how to calculate the Area of the Base, \mathbf{B}, and write an explanation. Lenguaje Objetivo: Puedo discutir con un compañero cómo calcular el Área de la Base, B, y escribir una explicación.

VOLUME \& SURFACE AREA WORD PROBLEM HINTS

1. Is this a volume or surface area problem? How do you know?
2. What are you solving for: V, TSA, LSA, B, or h?
3. Are there any numbers or words trying to trick us?
4. Is there another step, like to add, subtract, multiply, or divide? How do you know?

VOLUME STEPS:

Step 1: Write the Volume Formula in a T-Chart
Step 2: Replace "B", if needed, w/ the correct Area Formula
Step 3: Replace the variables with your numbers
(Be sure to use the radius, not the diameter!)
Step 4: Use your calculator to find the Volume

1. How do you calculate B, the Area of the Base, for a cylinder or cone? \qquad
\qquad
2. A storage container for oil is in the shape of a cylinder with a diameter of 10 ft and a height of 17 ft . Which measurement is closest to the volume of the storage container in cubic feet?

F $534 \mathrm{ft}^{3}$
G $1,335 \mathrm{ft}^{3}$
H $691 \mathrm{ft}^{3}$
J $1,696 \mathrm{ft}^{3}$
3. A paper drinking cup in the shape of a cone has a height of 10 centimeters and a diameter of 8 centimeters. Which of the following is closest to the volume of the cup in cubic centimeters?

F $167 \mathrm{~cm}^{3}$
G $209 \mathrm{~cm}^{3}$
H $670 \mathrm{~cm}^{3}$
J $502 \mathrm{~cm}^{3}$
4. A ball shaped like a sphere has a radius of approximately $2 \frac{1}{8}$ inches. Which of the following is the best estimate of the volume of the ball?

F $\quad 32$ in. ${ }^{3}$
G $11 \mathrm{in}^{3}{ }^{3}$
H 25 in. ${ }^{3}$
J $17 \mathrm{in} .^{3}$
5. A cylindrical pan has the dimensions shown below.

A formula for the volume of a cylinder is $V=B h$. Which equation best represents B , the area of the base, of this pan in square inches?
A. $B=\pi\left(3 \frac{1}{2}\right)^{2}$
B. $\quad B=\pi(7)^{2}$
C. $\quad B=2 \pi(7)$
D. $\quad B=\pi\left(2 \frac{3}{4}\right)(14)$
6. Jennifer must fill a cylindrical container with a solution for a science lab activity. The container is 6 inches tall and has a diameter of 2 inches. What is the approximate amount of solution Jennifer can put in the container?

A 12.00 inches 3
B 18.84 inches 3
C 37.68 inches 3
D 75.36 inches 3
7. The volume of the can below is $791.28 \mathrm{~cm}^{3}$. If the height of the can is 7 cm , what is the Area of the Base?
$B=$ \qquad

8. The volume of the cylinder below is $150 \mathrm{~cm}^{3}$. If the Area of the Base is $25 \mathrm{~cm}^{2}$, what is the height of the cylinder?
$h=$ \qquad

9. A beach ball has a radius of 3 centimeter s. What is the approximate amount of air in the ball?

A $12.56 \mathrm{~cm}^{3}$
B $37.68 \mathrm{~cm}^{3}$
C $84.78 \mathrm{~cm}^{3}$
D $113.04 \mathrm{~cm}^{3}$
10. A can holds 3 tennis balls as shown in the figure. The radius of each tennis ball is 3 centimeters.

What is the volume of one tennis ball?

11. Which container can hold more flour, Canister 1 or Canister 2? How much more flour can the larger canister hold?

Canister 1

Canister 2

ANSWER: \qquad
12. A hatbox in the shape of a cylinder is modeled below. The diameter of the cylinder is 24 inches. The height of the cylinder is 8 inches.

The volume of a cylinder can be found by using the formula $V=B h$. Which expression can be used to determine B, the area of the base, of this hatbox in square inches?

F. $\quad(24)^{2} \pi$
G. $(12)^{2} \pi$
H. $8^{2} \cdot 12$
J. $12^{2} \cdot 8$
13. Mr. Myers and Mr. Holyoke need to pump up 20 brand new soccer balls for practice. Each ball has a diameter of 12 inches. How much air will it take to fill up all $\mathbf{2 0}$ soccer balls?

ANSWER:

\qquad

14. Alejandra is filling a cylindrical tank with gasoline at a rate of 20 cubic feet per minute. The radius of the tank is 10 feet and the height is 8 feet. How many minutes will it take to fill the tank to the top?

Part 1: Find the volume.

ANSWER: \qquad
Part 2: How long will it take to fill the tank at the rate 20 cubic feet per minute?

ANSWER: \qquad
15. A silo shaped like a cylinder is 12 feet in diameter and 30 feet high. The silo is filled with corn only halfway of the height of the silo. How much corn is in the silo?
\qquad

